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Abstract

Mesoscale structures such as particle clusters have been observed both in experi-
ments and in numerical simulations of circulating fluidized beds. In a numerical
simulation, in order to account for the effects of such mesoscale structures, the com-
putational grids have to be fine enough. The use of such fine grids is impractical
in engineering applications due to excessive computational costs. To predict the
macroscopic behavior of a fluidized bed with reasonable computation cost, we per-
form a second average over the averaged equations for two-phase flows. A mesoscale
inter-phase exchange force is found to be the correlation of the particle volume frac-
tion and the pressure gradient. This force is related to the mesoscale added mass of
the two-phase flow. Typically, added mass for particle scale interactions is negligible
in gas-solid flows since the gas density is small compared to density of solid particles.
However, for a mesoscale structure, such as a bubble, the surrounding media is the
mixture of gas and particles. The “surrounding fluid” density experienced by the
the mesoscale structure is the density of the surrounding mixture. Therefore the
added mass of a mesoscale structure, such as bubbles, cannot be neglected.

The property of this new force is studied based on our numerical simulation of a
fluidized bed using high grid resolution. It is shown that this force is important in the
region where the particle volume fraction is high. The effects of the inhomogeneity
to the interphase drag are also studied.

1 Introduction

It is now well-recognized fact that mesoscale structures, such as, bubbles, particle
clusters and streamers exist in many circulating fluidized bed. Mesoscale interactions
have important effects on the macroscopic behavior of an industrial sized fluidized
bed. Usually, the size of mesoscale structure is smaller than the grid cell-size that is
affordable to use in a numerical calculation. To account for effects of the mesoscale
structures, we need to study their behavior and to develop a model for practical
numerical calculations.

In this paper we shall demonstrate that these mesoscale structures are the di-
rect consequence of inherent instabilities described in the averaged two-phase flow



equations; and are not caused by the particle-scale interactions described by tradi-
tional kinetic theories. Particle-scale interactions do, however, modify the details
of mesoscale structures. This is similar to high Reynolds number turbulence. Al-
though the molecular viscosity controls the detailed energy dissipation mechanism
at the Kolmogorov scale, the energy cascade is dominated by motion of large-scale
eddies. Indeed, recently, Agrawal et al. (2000) performed two-dimensional simu-
lations using a set of two-phase flow equations and kinetic theory to model effects
of particle-particle interactions. They found that Reynolds stresses in the particle
phase result mainly from the mesoscale interactions and the contribution from the
kinetic theory of granular materials is negligible.

Using the ensemble phase averaging method (Zhang and VanderHeyden, 2000b),
we derived a set of macroscopic equations. A new macroscopic force is found to
describe the mesoscale interactions of the two phases. With the numerical simulation
results we studied the properties of the new force term.

2 Numerical simulations without using a kinetic theory

To consider particle-particle interactions in a fluidized bed, it is customary now
to use a kinetic theory. One of the fundamental assumptions of a kinetic theory
requires the instantaneous binary collisions. This implies that particles do not in-
teract with each other except in a collision. This assumption excludes the effects
of particle-fluid-particle interactions, because this type of interaction is neither in-
stantaneous, nor likely binary. A technique (Zhang and Rauenzahn, 1997, 2000)
to study prolonged particle interactions and multiparticle interactions has been de-
veloped to study dense (nearly dense packing) granular systems. This technique,
however, has not been applied to relatively dilute fluidized beds. As, mentioned
above, the mesoscale interactions are dominated by the instability of the averaged
two-phase flow equations at the mesoscale level, not at the particle scale. This scale
separation enables us to approximate mesoscale structures without explicitly consid-
ering particle-scale interactions, even though the particle-scale interactions modify
the details of mesoscale interactions. From this point of view, in our numerical
simulation, we employ only the simplest set of averaged two-phase flow equations.

0
E(ecpcuc) + V- (0c.pcucu.) = —0.Vp — 04f + 0.p.8, (1)
0
E(edﬁ’dud) + V - (Bapququg) = —05Vp + 04f + 03p,8, (2)
where f; is the particle drag
3
fy= —RHCCdpg|ud —uf(uy —u.). (3)

The symbols u, p, p, g and 8 stand for velocity, pressure, density and volume fraction
respectively. The subscripts d and ¢ stand for the disperse and continuous phases
respectively.
The drag coefficient Cy, due to White (1974), is calculated as
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Ci=Coo+—+——— Re="%"_"" (O =04 4
d fore} Re 1+ /—Re v, fore} ()



1100 11008

1000 1000} ; THE2
- \82 I 0.300
% 0.280
900 900 gl 0.260
- —1 0.240
800 800 ;, { - 0.220
P — 0.200
700 700} — 0.180
2 1 0.160
600 600~ || 0140
> > : 1 0.120
( 1 0.100
500 5005 = 0080
&MY ] 0.060
400 400 . o -0 I 0.040
B 0.020

300 300 s

200 200F 24

100 100 f(»\

0 N BN IR | Om R R BN |
0 25 50 75 100 0 25 50 75 100
X X

Figure 1: A snapshot of solid phase velocity contour and particle volume fraction
contour on a two dimensional simulation. The particle size is 76um in the bed
simulated. Gas velocity at the bottom is 3.7 m/s and the solid flux is 98 kg/m?/s.

where v, is the kinematic viscosity of the continuous phase.

We performed simulations with this set of averaged equations of the fluidized bed
studied by Bader et al. (1988). Figure 1 shows one of the snap shots of velocity and
particle volume fraction contours. It shows clearly the core-annular flow pattern.
The presence of mesoscale structures is evident.

We also used the set of averaged equations to perform three-dimensional simu-
lation (Zhang and VanderHeyden 2000) and compared our numerical results to the
experiment performed by Van den Moortel et al. (1998). At high enough grid res-
olution, mesoscale structures are observed as shown in Figure 2. This figure shows
the contour of the solid volume fraction on mid-plane of the square duct. In this
geometry, particles concentrated in the four corners of the square duct instead of
the wall of the duct, therefore the core annular flow pattern is not shown as clearly
as in Figure 1. Good quantitative agreement between numerical results and exper-
iment were found in this simulation. For instance, the calculated mass fluxes are
compared to experimental values in Figure 3. This agreement with data is further
evidence that the macroscopic behavior of a gas-solid fluidized bed is dominated by
mesoscale interactions.

Although, these mesoscale scale structures can be captured with the fine grid
resolution used in our simulation, direct application of the equations used to engi-
neering practice is not realistic. To simulate 21 seconds of real time in the small
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Figure 2: A snapshot of particle volume fraction contour on a mid-plane of the
experimental device used by Van den Moortel et al.(1998). The experimental section
of the device is a square duct with 20cm side, and 200cm in height. The overall
volume fraction in the device is 3%. The particle material density is 2.4 g/cm?, and
mean diameter is 120um with 20um of standard deviation. The fluid is gas at room
temperature.

fluidized bed of Van den Moortel et al., we used an SGI Origin 200 machine with
two processors in parallel. It took us 51 days of wall-clock time or about 100 CPU
days. For engineering applications, we seek to derive a set of macroscopic equations
that accounts for the effects of mesoscale interactions through models that can be
used in a much less costly calculation.
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Figure 3: Comparison of calculated mass fluxes with the experimental values.



3 A new phase interaction forces at mesoscale

By performing an ensemble phase average of momentum equations we found a new
exchange force f,, representing the mesoscale interactions (Zhang and VanderHeyden
(2001Db).

04t = 04V - 0, (5)

where o, is the stress of the continuous phase averaged on the particle scale level.
The primes denote the fluctuation of the quantity. The force f,, results from the
correlation of fluctuations in volume fraction and fluctuations in stress divergence.
It vanishes in a homogeneous flow. To understand the physical meaning of this
force, let us consider a particle cluster with a constant volume fraction fluctuation
6. Let V be the volume of the cluster. Then the integral

/ 6,V -l dv = 6}, / a'ds, (6)
\%

represents the interfacial force on the cluster surface. This force represents the in-
teraction of the cluster and the surrounding medium. In the case of non-constant

", the force f;, can be viewed as the averaged interfacial force acting on the fuzzy
surface of clusters. Interactions between the mesoscale structures and the surround-
ing medium can be divided into a drag and an added mass force similar to the case
for a particle in a fluid. Typically, in a gas-solid flow, gas inertia is negligible. For
the case of mesoscale structures, the surrounding medium is not pure gas but a
mixture of solid and gas, which has a much larger density than the gas. Therefore
the mesoscale added-mass force between the two phases is important. In Figure
4, based on our high resolution simulation (Zhang and VanderHeyden, 2001a), the
force f,, is shown as a function of height in the fluidized bed.
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Figure 4: Mesoscale force f,,, as a function of height. The superficial gas velocity is
L.lm/s.

In the figure, the mesoscale force f,, is negative, resisting upward motion of the
particle phase, in the lower half of the fluidized bed. It is positive, pushing the par-
ticle phase upward, in the upper half of the fluidized bed. In a statistically steady
fluidized bed, solid volume fraction decreases with the height. Based on mass conser-
vation, the particle phase accelerates vertically while the gas phase decelerates. At
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Figure 5: Averaged particle drag force as a function of height. The solid line is results
from numerical simulation and the dashed line is calculated using the averaged gas
velocity experienced by particles v defined in eq. (9). The dot and dash line is
calculated using averaged relative velocity ug — u.. The superficial gas velocity is
L.lm/s.

particle scale, the added mass effect resulting from such relative motion is negligible
since gas density is small compared to the particle phase density. At the mesoscale
level, however, the mesoscale structures, such as bubbles, move in a mixture of par-
ticles and gas. The effective density experienced by the mesoscale structure is of the
order of the density of the mixture that is substantially large than the gas density.
Therefore, mesoscale added mass is important while the particle scale added mass
is negligible. The positive part of the force is due to the average cluster drag as
a result of relative motion between the particle clusters and surrounding medium.
The negative part of the force cannot be explained by the drag alone. It can only
be explained by an added mass force since at the lower portion of the fluidized bed
the relative acceleration between the two phases is large compared to that in the
upper half.

The effect of the mesoscale is not only restricted to the mesoscale force. Within
a particle cluster the particle phase falls in the wake generated by the leading part
of the cluster and the relative velocity is significantly less than the averaged the
relative velocity. Therefore the drag, f;, is significantly reduced as shown in Figure
3. If we used the averaged relative velocity experienced by the particles to calculate
the drag force, close agreement with the numerical results are found as shown in
Figure 5.

Both the mesoscale added mass and the reduction of drag contribute significantly
to the macroscopic behavior of a fluidized bed. For the mesoscale added mass force
we propose

ou ou
Ot = —Copm (8—: +ug-Vug — 8—; —Uc- Vuc) . (7)
where p,, = 0304+ 0.p. is the density of the mixture, and C, is an added mass coeffi-

cient. The added mass coefficient is apparently dependent on the shape and the flow
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Figure 6: Vertical distribution of pressure gradient and averaged particle volume
fraction calculated using different added mass coefficients C,,. The relative velocity
reduction coefficient C, is fixed at 0.9 in all the calculations.

6000 ——r———T———————— 035 ———— 7T

5000 [,

o
N
&

— — - Cr=088 — — = Cr=0.88

4000

Cr=0.90 Cr=0.90 4

o
o
T

3000 1= e Cr=0.92 e Cr=0.92

o

s

@
T

2000 |-

Particle volume fraction "6,

Negative pressure gradient (Pa/m)
°
2
T

1000 r 005 }

5 ] 1 5
Height (m) Height (m)

Figure 7: Vertical distribution of pressure gradient and averaged particle volume
fraction calculated using different relative velocity reduction coefficient C,. The
added mass coefficient C,, is fixed at 4.0 in all the calculations

condition of the mesoscale structures. Ideally, in (7), the density p,, should be an

averaged density outside a mesoscale structure rather than the mixture density. To

avoid introduction of additional constitutive relation, we choose to use the mixture

density until further study into the properties of mesoscale structure is conducted.
For the drag term, we propose (White, 1974)

3
fg = _Eeccdpgh’w; (8)

where v is the relative velocity in the vertical direction.
v = (1= Cr)(ug; — tez), 9)

and C, is relative velocity reduction coefficient.

Figures 6 and 7 illustrate the effects of the added mass coefficient C, and coef-
ficient of relative velocity reduction C, in a one-dimensional vertical fluidized bed
simulation. Note that these forces modifications significantly affect the pressure
gradient and volume fraction profiles.



Conclusions

Averaged macroscopic equations for two-phase flows, considering effects of mesoscale
structures, are derived. It is found that the mesoscale added mass is important to
the macroscopic averaged equations since mesoscale structures are immersed in a
mixture of gas and particles. The effective density in the mesoscale added mass is
of the order of mixture density, not the gas density.

The presence of mesoscale structures reduces the relative velocity experienced by
particles and the drag between the two phases. Our numerical results suggest that
only when both the mesoscale added mass and the drag reduction are accounted for,
the distribution of particle volume fraction along the height of a circulating fluidized
bed can be predicted correctly.
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